New formulae for function.
Let G be an additive finite abelian group, and let S be a sequence over G. We say that S is regular if for every proper subgroup H ⊆ G, S contains at most |H|-1 terms from H. Let ₀(G) be the smallest integer t such that every regular sequence S over G of length |S| ≥ t forms an additive basis of G, i.e., every element of G can be expressed as the sum over a nonempty subsequence of S. The constant ₀(G) has been determined previously only for the elementary abelian groups. In this paper, we determine...
Let and . Denote by the set of all integers whose canonical prime representation has all exponents
For a finite abelian group G and a splitting field K of G, let (G,K) denote the largest integer l ∈ ℕ for which there is a sequence over G such that for all . If (G) denotes the Davenport constant of G, then there is the straightforward inequality (G) - 1 ≤ (G,K). Equality holds for a variety of groups, and a conjecture of W. Gao et al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups G for which (G) -...