Displaying 101 – 120 of 238

Showing per page

Leudesdorf's theorem and Bernoulli numbers

I. Sh. Slavutsky (1999)

Archivum Mathematicum

For m , ( m , 6 ) = 1 , it is proved the relations between the sums W ( m , s ) = i = 1 , ( i , m ) = 1 m - 1 i - s , s , and Bernoulli numbers. The result supplements the known theorems of C. Leudesdorf, N. Rama Rao and others. As the application it is obtained some connections between the sums W ( m , s ) and Agoh’s functions, Wilson quotients, the indices irregularity of Bernoulli numbers.

Nonvanishing of a certain Bernoulli number and a related topic

Humio Ichimura (2013)

Acta Arithmetica

Let p = 1 + 2 e + 1 q be an odd prime number with q an odd integer. Let δ (resp. φ) be an odd (resp. even) Dirichlet character of conductor p and order 2 e + 1 (resp. order d φ dividing q), and let ψₙ be an even character of conductor p n + 1 and order pⁿ. We put χ = δφψₙ, whose value is contained in K = ( ζ ( p - 1 ) p ) . It is well known that the Bernoulli number B 1 , χ is not zero, which is shown in an analytic way. In the extreme cases d φ = 1 and q, we show, in an algebraic and elementary manner, a stronger nonvanishing result: T r n / 1 ( ξ B 1 , χ ) 0 for any pⁿth root ξ...

Currently displaying 101 – 120 of 238