O řadách s nezápornými členy
Page 1
Jan Mařík, Miloš Neubauer (1960)
Časopis pro pěstování matematiky
Antonio M. Oller-Marcén (2017)
Mathematica Bohemica
A homothetic arithmetic function of ratio is a function such that for every . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of in terms of the period and the ratio of .
Katalin Gyarmati (2001)
Acta Arithmetica
Andrzej Makowski (1982)
Elemente der Mathematik
R. Boyle (1978)
Acta Arithmetica
András Sárközy (1980)
Acta Arithmetica
Štefan Porubský (1978)
Mathematica Slovaca
Nechemia Burshtein, Johanan Schönheim (1974)
Czechoslovak Mathematical Journal
Alexander, Samuel (2011)
Journal of Integer Sequences [electronic only]
R. Tijdeman (1973)
Compositio Mathematica
Štefan Porubský (1976)
Acta Arithmetica
Andrzej Rotkiewicz (2005)
Acta Mathematica Universitatis Ostraviensis
We use the properties of -adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
David W. Boyd, Janice Cook, Patrick Morton (1989)
Mihail N. Kolountzakis (1996)
Acta Arithmetica
Refik Keskin, Zafer Şiar, Olcay Karaatlı (2013)
Czechoslovak Mathematical Journal
In this study, we determine when the Diophantine equation has an infinite number of positive integer solutions and for Moreover, we give all positive integer solutions of the same equation for in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation .
P. Erdös, T. Shorey (1976)
Acta Arithmetica
Xander Faber, José Felipe Voloch (2011)
Journal de Théorie des Nombres de Bordeaux
Let be a polynomial of degree at least 2 with coefficients in a number field , let be a sufficiently general element of , and let be a root of . We give precise conditions under which Newton iteration, started at the point , converges -adically to the root for infinitely many places of . As a corollary we show that if is irreducible over of degree at least 3, then Newton iteration converges -adically to any given root of for infinitely many places . We also conjecture that...
Alexandru Zaharescu, Mohammad Zaki (2010)
Acta Arithmetica
Jürgen Lehn, Jürgen Eichenauer (1987)
Manuscripta mathematica
Page 1