Determinants of matrices related to the Pascal triangle
The aim of this paper is to study determinants of matrices related to the Pascal triangle.
The aim of this paper is to study determinants of matrices related to the Pascal triangle.
This note summarizes a presentation made at the Third International Meeting on Integer Valued Polynomials and Problems in Commutative Algebra. All the work behind it is joint with Scott T. Chapman, and will appear in [2]. Let represent the ring of polynomials with rational coefficients which are integer-valued at integers. We determine criteria for two such polynomials to have the same image set on .
We apply the larger sieve to bound the number of matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar...
Let be polynomials in variables without a common zero. Hilbert’s Nullstellensatz says that there are polynomials such that . The effective versions of this result bound the degrees of the in terms of the degrees of the . The aim of this paper is to generalize this to the case when the are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz–type inequalities and to deformation theory are also discussed.
On montre comment écrire de grandes familles, avec de hautes multiplicités, de cas d’égalité pour l’inégalité de Stothers-Mason (si sont des polynômes premiers entre eux, le nombre exact de racines du produit dépasse de le plus grand des degrés des composantes . On développera pour cela des techniques polynomiales itératives inspirées des décompositions de Dunford-Schwartz et de fonctions de Belyi. Des exemples d’application avec les conjectures ou de M. Hall sont développés.