Displaying 121 – 140 of 350

Showing per page

Fonctions entières à valeurs dans un corps de nombres

Mohammed Ably (2011)

Bulletin de la Société Mathématique de France

Soit Γ un sous-groupe de rang maximal d’un corps de nombres 𝐤 . On montre qu’une fonction entière, envoyant Γ dans l’anneau des entiers d’une extension finie de 𝐤 , de croissance analytique et arithmétique faibles est un polynôme. Ce résultat étend un théorème bien connu de Pólya. On montre également que ce résultat est à constante près optimal.

GCD sums from Poisson integrals and systems of dilated functions

Christoph Aistleitner, István Berkes, Kristian Seip (2015)

Journal of the European Mathematical Society

Upper bounds for GCD sums of the form k , = 1 N ( gcd ( n k , n ) ) 2 α ( n k n ) α are established, where ( n k ) 1 k N is any sequence of distinct positive integers and 0 < α 1 ; the estimate for α = 1 / 2 solves in particular a problem of Dyer and Harman from 1986, and the estimates are optimal except possibly for α = 1 / 2 . The method of proof is based on identifying the sum as a certain Poisson integral on a polydisc; as a byproduct, estimates for the largest eigenvalues of the associated GCD matrices are also found. The bounds for such GCD sums are used to establish...

Growth of the product j = 1 n ( 1 - x a j )

J. P. Bell, P. B. Borwein, L. B. Richmond (1998)

Acta Arithmetica

We estimate the maximum of j = 1 n | 1 - x a j | on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when a j is j k or when a j is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when a j is j.    In contrast we show, under fairly general conditions, that the maximum is less than 2 n / n r , where r is an arbitrary positive number. One consequence is that the...

Heights of roots of polynomials with odd coefficients

J. Garza, M. I. M. Ishak, M. J. Mossinghoff, C. G. Pinner, B. Wiles (2010)

Journal de Théorie des Nombres de Bordeaux

Let α be a zero of a polynomial of degree n with odd coefficients, with α not a root of unity. We show that the height of α satisfies h ( α ) 0 . 4278 n + 1 . More generally, we obtain bounds when the coefficients are all congruent to 1 modulo m for some m 2 .

Imbrications entre le théorème de Mason, la descente de Belyi et les différentes formes de la conjecture ( a b c )

Michel Langevin (1999)

Journal de théorie des nombres de Bordeaux

Soient A , B , C = A + B trois éléments de l’ensemble * des entiers &gt; 0 (resp. [ X ] ) des polynômes complexes) premiers entre eux ; on note r ( A B C ) le produit des facteurs premiers (resp. le nombre des facteurs premiers dans [ X ] ) du produit A B C . La conjecture ( a b c ) énonce que, pour tout ϵ &gt; 0 , il existe C ϵ &gt; 0 pour lequel l’inégalité : r ( A B C ) C ϵ S 1 - ϵ avec S = max ( A , B , C ) ) est toujours vérifiée. Le théorème de Mason établit l’inégalité, D (supposé &gt; 0 ) désignant le plus grand des degrés des polynômes A , B , C : r ( A B C ) D + 1 . Les cas de triplets de polynômes où l’égalité...

Currently displaying 121 – 140 of 350