More cubic surfaces violating the Hasse principle
We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.
We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.
We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.
Given a binary recurrence , we consider the Diophantine equation with nonnegative integer unknowns , where for 1 ≤ i < j ≤ L, , and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.