Effective results for Diophantine equations over finitely generated domains
Let A be an arbitrary integral domain of characteristic 0 that is finitely generated over ℤ. We consider Thue equations F(x,y) = δ in x,y ∈ A, where F is a binary form with coefficients from A, and δ is a non-zero element from A, and hyper- and superelliptic equations in x,y ∈ A, where f ∈ A[X], δ ∈ A∖0 and . Under the necessary finiteness conditions we give effective upper bounds for the sizes of the solutions of the equations in terms of appropriate representations for A, δ, F, f, m. These...