Eine Beziehung zwischen der hyperbolischen Geometrie und der Zahlentheorie.
On montre comment écrire de grandes familles, avec de hautes multiplicités, de cas d’égalité pour l’inégalité de Stothers-Mason (si sont des polynômes premiers entre eux, le nombre exact de racines du produit dépasse de le plus grand des degrés des composantes . On développera pour cela des techniques polynomiales itératives inspirées des décompositions de Dunford-Schwartz et de fonctions de Belyi. Des exemples d’application avec les conjectures ou de M. Hall sont développés.