On compositions and triality.
Let be a totally real algebraic number field whose ring of integers is a principal ideal domain. Let be a totally definite ternary quadratic form with coefficients in . We shall study representations of totally positive elements by . We prove a quantitative formula relating the number of representations of by different classes in the genus of to the class number of , where is a constant depending only on . We give an algebraic proof of a classical result of H. Maass on representations...