The centralizer of a classical group and Bruhat-Tits buildings
Let be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let be the centralizer of a semisimple rational Lie algebra element of We prove that the Bruhat-Tits building of can be affinely and -equivariantly embedded in the Bruhat-Tits building of so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let and be maps from to which preserve the Moy–Prasad filtrations. We prove that...