Sets with even partition functions and 2-adic integers. II.
We obtain a conditional, under the Generalized Riemann Hypothesis, lower bound on the number of distinct elliptic curves over a prime finite field of elements, such that the discriminant of the quadratic number field containing the endomorphism ring of over is small. For almost all primes we also obtain a similar unconditional bound. These lower bounds complement an upper bound of F. Luca and I. E. Shparlinski (2007).
Let be an elliptic curve defined over , the finite field of elements. We show that for some constant depending only on , there are infinitely many positive integers such that the exponent of , the group of -rational points on , is at most . This is an analogue of a result of R. Schoof on the exponent of the group of -rational points, when a fixed elliptic curve is defined over and the prime tends to infinity.
This note gives a survey of some recent results on the stable reduction of covers of the projective line branched at three points.