Inequalities for Convex Bodies and Polar Reciprocal Lattices in Rn.
G.F. Voronoi (1868–1908) wrote two memoirs in which he describes two reduction theories for lattices, well-suited for sphere packing and covering problems. In his first memoir a characterization of locally most economic packings is given, but a corresponding result for coverings has been missing. In this paper we bridge the two classical memoirs.By looking at the covering problem from a different perspective, we discover the missing analogue. Instead of trying to find lattices giving economical...
A Klein polyhedron is defined as the convex hull of nonzero lattice points inside an orthant of . It generalizes the concept of continued fraction. In this paper facets and edge stars of vertices of a Klein polyhedron are considered as multidimensional analogs of partial quotients and quantitative characteristics of these “partial quotients”, so called determinants, are defined. It is proved that the facets of all the Klein polyhedra generated by a lattice have uniformly bounded determinants...
Článek se zaměřuje na bodové spirály odvozené zejména od Fermatovy a Archimédovy spirály. Pojem zlatého úhlu je rozšířen na množinu kovových úhlů jako analogie k množině kovových průměrů zavedených Verou de Spinadel.
Dans cet article, nous étudions certains invariants liés à la réduction de Hermite-Korkine-Zolotareff des réseaux euclidens (ou des formes quadratiques définies positives).