Page 1

Displaying 1 – 9 of 9

Showing per page

Some conjectures on the zeros of approximates to the Riemann ≡-function and incomplete gamma functions

James Haglund (2011)

Open Mathematics

Riemann conjectured that all the zeros of the Riemann ≡-function are real, which is now known as the Riemann Hypothesis (RH). In this article we introduce the study of the zeros of the truncated sums ≡N(z) in Riemann’s uniformly convergent infinite series expansion of ≡(z) involving incomplete gamma functions. We conjecture that when the zeros of ≡N(z) in the first quadrant of the complex plane are listed by increasing real part, their imaginary parts are monotone nondecreasing. We show how this...

Standard Models of Abstract Intersection Theory for Operators in Hilbert Space

Grzegorz Banaszak, Yoichi Uetake (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

For an operator in a possibly infinite-dimensional Hilbert space of a certain class, we set down axioms of an abstract intersection theory, from which the Riemann hypothesis regarding the spectrum of that operator follows. In our previous paper (2011) we constructed a GNS (Gelfand-Naimark-Segal) model of abstract intersection theory. In this paper we propose another model, which we call a standard model of abstract intersection theory. We show that there is a standard model of abstract intersection...

Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz

Rimer Zurita (2013)

Acta Arithmetica

Let Ω(n) and ω(n) denote the number of distinct prime factors of the positive integer n, counted respectively with and without multiplicity. Let d k ( n ) denote the Piltz function (which counts the number of ways of writing n as a product of k factors). We obtain a precise estimate of the sum n x , Ω ( n ) - ω ( n ) = q f ( n ) for a class of multiplicative functions f, including in particular f ( n ) = d k ( n ) , unconditionally if 1 ≤ k ≤ 3, and under some reasonable assumptions if k ≥ 4. The result also applies to f(n) = φ(n)/n (where φ is the totient...

Symétries spectrales des fonctions zêtas

Frédéric Paugam (2009)

Journal de Théorie des Nombres de Bordeaux

On définit, en réponse à une question de Sarnak dans sa lettre a Bombieri [Sar01], un accouplement symplectique sur l’interprétation spectrale (due à Connes et Meyer) des zéros de la fonction zêta. Cet accouplement donne une formulation purement spectrale de la démonstration de l’équation fonctionnelle due à Tate, Weil et Iwasawa, qui, dans le cas d’une courbe sur un corps fini, correspond à la démonstration géométrique usuelle par utilisation de l’accouplement de dualité de Poincaré Frobenius-équivariant...

Currently displaying 1 – 9 of 9

Page 1