O zakonomernostyakh upravlyayushchikh khaotichnostyu povedeniya funkcii i ee proizvodnyh
This paper studies a two-variable zeta function attached to an algebraic number field , introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When this function becomes the completed Dedekind zeta function of the field . The function is a meromorphic function of two complex variables with polar divisor , and it satisfies the functional equation . We consider the special case , where for this function...
AMS Subj. Classification: 11M41, 11M26, 11S40We study the generalized Li coefficients associated with the class S♯♭ of functions containing the Selberg class and (unconditionally) the class of all automorphic L-functions attached to irreducible unitary cuspidal representations of GLN(Q) and the class of L-functions attached to the Rankin-Selberg convolution of two unitary cuspidal automorphic representations π and π′ of GLm(AF ) and GLm′ (AF ). We deduce a full asymptotic expansion of the Archimedean...
Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only if Robin’s inequality is satisfied for , where denotes the Euler(-Mascheroni) constant. We show by elementary methods that if does not satisfy Robin’s criterion it must be even and is neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we show, moreover, that must be divisible by a fifth power . As consequence we obtain that RH holds true iff every natural number divisible by a fifth power...
The Brun-Titchmarsh theorem shows that the number of primes which are less than x and congruent to a modulo q is less than (C+o(1))x/(ϕ(q)logx) for some value C depending on logx/logq. Different authors have provided different estimates for C in different ranges for logx/logq, all of which give C>2 when logx/logq is bounded. We show that one can take C=2 provided that logx/logq ≥ 8 and q is sufficiently large. Moreover, we also produce a lower bound of size when logx/logq ≥ 8 and is bounded....
We introduce the real valued real analytic function κ(t) implicitly defined by (κ(0) = -1/2). By studying the equation κ(t) = n (without making any unproved hypotheses), we show that (and how) this function is closely related to the (exact) position of the zeros of Riemann’s ζ(s) and ζ’(s). Assuming the Riemann hypothesis and the simplicity of the zeros of ζ(s), it follows that the ordinate of the zero 1/2 + iγₙ of ζ(s) is the unique solution to the equation κ(t) = n.
The function is known to change sign infinitely often, but so far all calculated values are positive. In this paper we prove that the first sign change occurs well before exp(495.702833165).