in short intervals
For any sufficiently large real number , the interval contains at least one integer having at most two prime factors .
For any sufficiently large real number , the interval contains at least one integer having at most two prime factors .
For a large class of digital functions , we estimate the sums (and , where denotes the von Mangoldt function (and the Möbius function). We deduce from these estimates a Prime Number Theorem (and a Möbius randomness principle) for sequences of integers with digit properties including the Rudin-Shapiro sequence and some of its generalizations.
In questo lavoro vengono migliorati i risultati ottenuti in «Primes in Almost All Short Intervals» riguardo la distribuzione dei primi in quasi tutti gli intervalli corti della forma , con funzione reale appartenente ad una ampia classe di funzioni. Il problema viene trattato mettendo in relazione l'insieme eccezionale per la distribuzione dei primi in intervalli nella forma con l'insieme eccezionale per la formula asintotica I risultati presentati vengono quindi ottenuti grazie allo studio...
We prove that given any small but fixed η > 0, a positive proportion of all gaps between consecutive primes are smaller than η times the average gap. We show some unconditional and conditional quantitative results in this vein. In the results the dependence on η is given explicitly, providing a new quantitative way, in addition to that of the first paper in this series, of measuring the effect of the knowledge on the level of distribution of primes.