Diphantine Approximation with Square-free Numbers.
Le théorème des nombres premiers dit que la distance entre deux nombres premiers consécutifs est, en moyenne, de l’ordre de . Récemment, D. Goldston, J. Pintz et C. Yıldırım sont parvenus à démontrer que la distance normalisée pouvait devenir arbitrairement petite, améliorant spectaculairement les résultats connus auparavant. Sous des hypothèses considérées comme raisonnables, ils parviennent à montrer que infiniment souvent. Leur méthode est une très jolie application d’idées inspirée par...
We explore numerically the eigenvalues of the hermitian formwhen . We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.
The history of the construction, organisation and publication of factor tables from 1657 to 1817, in itself a fascinating story, also touches upon many topics of general interest for the history of mathematics. The considerable labour involved in constructing and correcting these tables has pushed mathematicians and calculators to organise themselves in networks. Around 1660 J. Pell was the first to motivate others to calculate a large factor table, for which he saw many applications, from Diophantine...
We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).
We show that the large sieve is optimal for almost all exponential sums.