The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Le rôle des algèbres A de Wiener, A de Beurling et H 1 de Sobolev dans la théorie des nombres premiers généralisés de Beurling

Jean-Pierre Kahane (1998)

Annales de l'institut Fourier

La théorie des nombres premiers généralisés de Beurling fait intervenir N ( x ) , la fonction de décompte des entiers généralisés, P ( x ) , celle des nombres premiers généralisés, et ζ ( s ) , la fonction dzeta adaptée. Les hypothèses sur N ( x ) se traduisent en propriétés de ζ ( s ) , qui entraînent ou non le “théorème des nombres premiers” (TNP) P ( x ) x / log x ou “ l’inégalité de Tchebycheff” (IT) P ( x ) = O ( x / log x ) . L’article est consacré au rôle de la fonction i t ζ ( 1 + i t ) , en relation avec les algèbres A = L 1 ( ) , A = f sup y | x | | ( f ) ( x ) | L 1 ( + , d y ) et H 1 = L 2 ( , ( 1 + y 2 ) d y ) . On montre que l’hypothèse i t ζ ( 1 + i t ) exp ( - 2 | t | α ) H 1 entraîne (TNP) quand α < 2 et...

Currently displaying 1 – 1 of 1

Page 1