O sedmnáctém Hilbertově problému
We prove that almost all positive even integers can be represented as with for . As a consequence, we show that each sufficiently large odd integer can be written as with for .
In 1909, Hilbert proved that for each fixed k, there is a number g with the following property: Every integer N ≥ 0 has a representation in the form N = x 1k + x 2k + … + x gk, where the x i are nonnegative integers. This resolved a conjecture of Edward Waring from 1770. Hilbert’s proof is somewhat unsatisfying, in that no method is given for finding a value of g corresponding to a given k. In his doctoral thesis, Rieger showed that by a suitable modification of Hilbert’s proof, one can give explicit...