Arcs with no more than two integer points on conics
D. S. Ramana (2010)
Acta Arithmetica
D. S. Ramana (2007)
Acta Arithmetica
Graeme Cohen (1975)
Acta Arithmetica
Y.-F. S. Pétermann (1986)
Commentarii mathematici Helvetici
Shaunna M. Plunkett-Levin (2013)
Acta Arithmetica
We find an improvement to Huxley and Konyagin’s current lower bound for the number of circles passing through five integer points. We conjecture that the improved lower bound is the asymptotic formula for the number of circles passing through five integer points. We generalise the result to circles passing through more than five integer points, giving the main theorem in terms of cyclic polygons with m integer point vertices. Theorem. Let m ≥ 4 be a fixed integer. Let be the number of cyclic polygons...
Yves Colin de Verdière (1986/1987)
Séminaire de théorie spectrale et géométrie
H. Groemer (1971)
Monatshefte für Mathematik
Bordellès, Olivier (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Eskin, Alex (1998)
Documenta Mathematica
Karim Belabas (1996)
Annales de l'institut Fourier
Considérons le cardinal de l’ensemble des racines cubiques de l’unité dans le groupe des classes de , où est un discriminant fondamental. Un résultat de Davenport et Heilbronn calcule la valeur moyenne de ces nombres quand varie. On obtient ici géométriquement une borne explicite pour le reste, avec la possibilité supplémentaire de restreindre les à des progressions arithmétiques. Des techniques de crible permettent alors d’évaluer la 3-partie des , où est pseudo-premier d’ordre . On...
L. Parnovski, N. Sidorova (2010)
Mathematical Modelling of Natural Phenomena
We study the number of lattice points in ℝd, d ≥ 2, lying inside an annulus as a function of the centre of the annulus. The average number of lattice points there equals the volume of the annulus, and we study the L1 and L2 norms of the remainder. We say that a dimension is critical, if these norms do not have upper and lower bounds of the same order as the radius goes to infinity. In [Duke Math. J., 107 (2001), No. 2, 209–238], it was proved that...
Patrick Sargos (1986)
Journal für die reine und angewandte Mathematik
M. N. Huxley, S. V. Konyagin (2009)
Acta Arithmetica
Matthias Beck (2003)
Acta Arithmetica
Kenneth Rosen (1981)
Acta Arithmetica
André Gillet (1965/1966)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Vsevolod F. Lev (1996)
Acta Arithmetica
Let two lattices have the same number of points on each hyperbolic surface . We investigate the case when Λ’, Λ” are sublattices of of the same prime index and show that then Λ’ and Λ” must coincide up to renumbering the coordinate axes and changing their directions.
Boca, Florin P. (2010)
The New York Journal of Mathematics [electronic only]
Javier Cilleruelo, Jorge Jiménez-Urroz (1998)
Acta Arithmetica
Peter Schmidt (1990)
Acta Arithmetica