Sulla partizione degli interi in addendi primi col procedimento del residuo minimo.
We show that if A and B are subsets of the primes with positive relative lower densities α and β, then the lower density of A+B in the natural numbers is at least , which is asymptotically best possible. This improves results of Ramaré and Ruzsa and of Chipeniuk and Hamel. As in the latter work, the problem is reduced to a similar problem for subsets of using techniques of Green and Green-Tao. Concerning this new problem we show that, for any square-free m and any of densities α and β, the...
We extend two results of Ruzsa and Vu on the additive complements of primes.
Suppose that are nonzero real numbers, not all negative, , is a well-spaced set, and the ratio is algebraic and irrational. Denote by the number of with such that the inequality has no solution in primes , , , . We show that for any .
1. Introduction. A positive number which is a sum of two odd primes is called a Goldbach number. Let E(x) denote the number of even numbers not exceeding x which cannot be written as a sum of two odd primes. Then the Goldbach conjecture is equivalent to proving that E(x) = 2 for every x ≥ 4. E(x) is usually called the exceptional set of Goldbach numbers. In [8] H. L. Montgomery and R. C. Vaughan proved that for some positive constant Δ > 0. In this paper we prove the following result. Theorem....