On some general problems in the theory of partitions, I
Improving on some results of J.-L. Nicolas [15], the elements of the set , for which the partition function (i.e. the number of partitions of with parts in ) is even for all are determined. An asymptotic estimate to the counting function of this set is also given.
We examine the -Pell sequences and their applications to weighted partition theorems and values of -functions. We also put them into perspective with sums of tails. It is shown that there is a deeper structure between two-variable generalizations of Rogers-Ramanujan identities and sums of tails, by offering examples of an operator equation considered in a paper published by the present author. The paper starts with the classical example offered by Ramanujan and studied by previous authors noted...
An overpartition pair is a combinatorial object associated with the -Gauss identity and the summation. In this paper, we prove identities for certain restricted overpartition pairs using Andrews’ theory of recurrences for well-poised basic hypergeometric series and the theory of Bailey chains.