Arithmetic progressions in sums of subsets of sparse sets
1. Introduction. Let A,B ⊂ [1,N] be sets of integers, |A|=|B|=cN. Bourgain [2] proved that A+B always contains an arithmetic progression of length . Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p₀(ε) there is a symmetric set A of residues mod p such that |A| > (1/2-ε)p and A + A contains no arithmetic progression of length (1.1). A set of residues can be used to get a set of integers in an obvious way. Observe...
Using an extension of Wright's version of the circle method, we obtain asymptotic formulae for partition ranks similar to formulae for partition cranks which where conjectured by F. Dyson and recently proved by the first author and K. Bringmann.
Nous étudions le comportement asymptotique d’une classe de suites mahlériennes dont les séries génératrices sont des produits infinis. Un exemple caractéristique est celui de l’estimation des coefficients de Taylor de , voisin des partitions binaires étudiées par De Bruijn. Le résultat obtenu illustre un cas typique d’une classification naturelle des suites mahlériennes. Les techniques utilisées, transformation de Mellin ou méthode du col, ressortissent à la théorie analytique des nombres et à...