Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Landau’s problems on primes

János Pintz (2009)

Journal de Théorie des Nombres de Bordeaux

At the 1912 Cambridge International Congress Landau listed four basic problems about primes. These problems were characterised in his speech as “unattackable at the present state of science”. The problems were the following :(1)Are there infinitely many primes of the form n 2 + 1 ?(2)The (Binary) Goldbach Conjecture, that every even number exceeding 2 can be written as the sum of two primes.(3)The Twin Prime Conjecture.(4)Does there exist always at least one prime between neighbouring squares?All these...

Large sets with small doubling modulo p are well covered by an arithmetic progression

Oriol Serra, Gilles Zémor (2009)

Annales de l’institut Fourier

We prove that there is a small but fixed positive integer ϵ such that for every prime p larger than a fixed integer, every subset S of the integers modulo p which satisfies | 2 S | ( 2 + ϵ ) | S | and 2 ( | 2 S | ) - 2 | S | + 3 p is contained in an arithmetic progression of length | 2 S | - | S | + 1 . This is the first result of this nature which places no unnecessary restrictions on the size of S .

Lattice Points.

Antonio Córdoba (1997)

The journal of Fourier analysis and applications [[Elektronische Ressource]]

Lattice points in some special three-dimensional convex bodies with points of Gaussian curvature zero at the boundary

Ekkehard Krätzel (2002)

Commentationes Mathematicae Universitatis Carolinae

We investigate the number of lattice points in special three-dimensional convex bodies. They are called convex bodies of pseudo revolution, because we have in one special case a body of revolution and in another case even a super sphere. These bodies have lines at the boundary, where all points have Gaussian curvature zero. We consider the influence of these points to the lattice rest in the asymptotic representation of the number of lattice points.

Currently displaying 1 – 20 of 34

Page 1 Next