-adic estimates for exponential sums and the theorem of Chevalley-Warning
Soit un entier pair. On considère un code BCH binaire de longueur et de distance prescrite avec . Le poids d’un mot non nul du dual de peut s’exprimer en fonction d’une somme exponentielle. Nous montrerons que cette somme n’atteint pas la borne de Weil et nous proposerons une amélioration de celle-ci. En conséquence, nous obtiendrons une amélioration de la borne de Carlitz-Uchiyama sur le poids des mots du dual de .
Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL have been considered, in which analogous GL-Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL. We give formulas for the...
We consider Weil sums of binomials of the form , where F is a finite field, ψ: F → ℂ is the canonical additive character, , and . If we fix F and d, and examine the values of as a runs through , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n odd, and with...