Displaying 61 – 80 of 497

Showing per page

Chebyshev polynomials and Pell equations over finite fields

Boaz Cohen (2021)

Czechoslovak Mathematical Journal

We shall describe how to construct a fundamental solution for the Pell equation x 2 - m y 2 = 1 over finite fields of characteristic p 2 . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation x 2 - m y 2 = n .

Complete arcs arising from a generalization of the Hermitian curve

Herivelto Borges, Beatriz Motta, Fernando Torres (2014)

Acta Arithmetica

We investigate complete arcs of degree greater than two, in projective planes over finite fields, arising from the set of rational points of a generalization of the Hermitian curve. The degree of the arcs is closely related to the number of rational points of a class of Artin-Schreier curves, which is calculated by using exponential sums via Coulter's approach. We also single out some examples of maximal curves.

Construction of Optimal Linear Codes by Geometric Puncturing

Maruta, Tatsuya (2013)

Serdica Journal of Computing

Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.∗This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

Counting irreducible polynomials over finite fields

Qichun Wang, Haibin Kan (2010)

Czechoslovak Mathematical Journal

In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: π ( x ) = q q - 1 x log q x + q ( q - 1 ) 2 x log q 2 x + O x log q 3 x , x = q n where π ( x ) denotes the number of monic irreducible polynomials in F q [ t ] with norm x .

Currently displaying 61 – 80 of 497