Car-Pólya and Gel’fond’s theorems for
We shall describe how to construct a fundamental solution for the Pell equation over finite fields of characteristic . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation .
We investigate complete arcs of degree greater than two, in projective planes over finite fields, arising from the set of rational points of a generalization of the Hermitian curve. The degree of the arcs is closely related to the number of rational points of a class of Artin-Schreier curves, which is calculated by using exponential sums via Coulter's approach. We also single out some examples of maximal curves.
Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.∗This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.
In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: where denotes the number of monic irreducible polynomials in with norm .