On the number of solutions of congruences and equations in
Let Fq denote the finite field of q elements. O. Ahmadi and A. Menezes have recently considered the question about the possible number of elements with zero trace in polynomial bases of F2n over F2. Here we show that the Weil bound implies that there is such a basis with n + O(log n) zero-trace elements.
1. Introduction. The Waring problem for polynomial cubes over a finite field F of characteristic 2 consists in finding the minimal integer m ≥ 0 such that every sum of cubes in F[t] is a sum of m cubes. It is known that for F distinct from ₂, ₄, , each polynomial in F[t] is a sum of three cubes of polynomials (see [3]). If a polynomial P ∈ F[t] is a sum of n cubes of polynomials in F[t] such that each cube A³ appearing in the decomposition has degree < deg(P)+3, we say that P is a restricted...
We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in of degree d for which s consecutive coefficients are fixed. Our estimate asserts that , where . We also prove that , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of of degree d with s consecutive coefficients fixed as above. Finally, we show that , where ₂(d,0) denotes the average second moment for all monic polynomials...
In this article, we formalize operations of points on an elliptic curve over GF(p). Elliptic curve cryptography [7], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security. We prove that the two operations of points: compellProjCo and addellProjCo are unary and binary operations of a point over the elliptic curve.