Les algèbres de Krasner-Tate
Soient un espace analytique affinoïde réduit sur un corps complet pour une valeur absolue non archimédienne, sa réduction canonique et un point de la variété algébrique affine . Ce travail décrit la singularité du point à l’aide d’objets associés à l’espace : la localisation formelle qui est une -algèbre noethérienne de spectre maximal et dont la réduction est ; un complété formel qui est une -algèbre noethérienne dont la réduction est . Les résultats essentiels sont obtenus...
We construct some locally unbounded topological fields having topologically nilpotent elements; this answers a question of Heine. The underlying fields are subfields of fields of formal power series. In particular, we get a locally unbounded topological field for which the set of topologically nilpotent elements is an open additive subgroup. We also exhibit a complete locally unbounded topological field which is a topological extension of the field of p-adic numbers; this topological field is a...