Displaying 21 – 40 of 41

Showing per page

Strictly analytic functions on p-adic analytic open sets.

Kamal Boussaf (1999)

Publicacions Matemàtiques

Let K be an algebraically closed complete ultrametric field. M. Krasner and P. Robba defined theories of analytic functions in K, but when K is not spherically complete both theories have the disadvantage of containing functions that may not be expanded in Taylor series in some disks. On other hand, affinoid theories are only defined in a small class of sets (union of affinoid sets) [2], [13] and [17]. Here, we suppose the field K topologically separable (example Cp). Then, we give a new definition...

Subfields of henselian valued fields

Ramneek Khassa, Sudesh K. Khanduja (2010)

Colloquium Mathematicae

Let (K,v) be a henselian valued field of arbitrary rank which is not separably closed. Let k be a subfield of K of finite codimension and v k be the valuation obtained by restricting v to k. We give some necessary and sufficient conditions for ( k , v k ) to be henselian. In particular, it is shown that if k is dense in its henselization, then ( k , v k ) is henselian. We deduce some well known results proved in this direction through other considerations.

Subgroups and hulls of Specker lattice-ordered groups

Paul F. Conrad, Michael R. Darnel (2001)

Czechoslovak Mathematical Journal

In this article, it will be shown that every -subgroup of a Specker -group has singular elements and that the class of -groups that are -subgroups of Specker -group form a torsion class. Methods of adjoining units and bases to Specker -groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker -group.

Sur la constante d’Eisenstein

Rachid Mechik (2008)

Annales mathématiques Blaise Pascal

On cherche à donner une méthode effective de calcul de la constante d’Eisenstein [3] d’une fonction algébrique. On commence en précisant les liens entre cette constante et les rayons de convergence p -adiques de la fonction pour les différents nombres premiers p . Puis on donne une démonstration entièrement effective du résultat bien connu liant fonctions algébriques et diagonales de fractions rationnelles. Enfin on explique comment en déduire une méthode de calcul générale. On illustre la méthode...

Sur le groupe unitaire relatif à une involution d’un corps algébriquement clos

Bruno Deschamps (2011)

Journal de Théorie des Nombres de Bordeaux

Dans cet article, nous tentons de généraliser à d’autres situations l’isomorphisme de groupes topologiques qui existe entre le groupe / et le groupe unitaire 𝕌 = { z / | z | = 1 } .Nous montrons que cet isomorphisme existe algébriquement en toute généralité : pour tout corps algébriquement clos C et toute involution c de C les groupes 𝕌 ( C , c ) = { z C / z c ( z ) = 1 } et C < c > / sont isomorphes. Nous donnons ensuite un exemple d’involution c 0 de qui n’est pas conjuguée, dans le groupe Aut ( ) , à la conjugaison complexe et telle que 𝕌 ( , c 0 ) soit topologiquement isomorphe...

Currently displaying 21 – 40 of 41