Une propriété de spécialisation continue
In the article we introduce a valuation function over a field [1]. Ring of non negative elements and its ideal of positive elements have been also defined.
We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space.
This paper deals with valuations of fields of formal meromorphic functions and their residue fields. We explicitly describe the residue fields of the monomial valuations. We also classify all the discrete rank one valuations of fields of power series in two and three variables, according to their residue fields. We prove that all our cases are possible and give explicit constructions.
Cet article traite d’un aspect de la controverse qui a opposé Hobbes et Wallis dans la deuxième moitié du xviie siècle, celui portant sur l’angle de contact. Wallis a publié deux traités sur l’angle de contact, l’un en 1656, l’autre en 1685. Entre ces deux dates sa position sur la question de l’angle de contact a sensiblement évolué. Durant la même période, il s’est opposé à Hobbes sur divers sujets de mathématiques, dont l’angle de contact. J’étudie les positions des deux protagonistes à travers...