Displaying 181 – 200 of 292

Showing per page

On the uniform behaviour of the Frobenius closures of ideals

K. Khashyarmanesh (2007)

Colloquium Mathematicae

Let be a proper ideal of a commutative Noetherian ring R of prime characteristic p and let Q() be the smallest positive integer m such that ( F ) [ p m ] = [ p m ] , where F is the Frobenius closure of . This paper is concerned with the question whether the set Q ( [ p m ] ) : m is bounded. We give an affirmative answer in the case that the ideal is generated by an u.s.d-sequence c₁,..., cₙ for R such that (i) the map R / j = 1 n R c j R / j = 1 n R c ² j induced by multiplication by c₁...cₙ is an R-monomorphism; (ii) for all a s s ( c j , . . . , c j ) , c₁/1,..., cₙ/1 is a R -filter regular sequence...

On wsq-primary ideals

Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)

Czechoslovak Mathematical Journal

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional...

Primary elements in Prüfer lattices

C. Jayaram (2002)

Czechoslovak Mathematical Journal

In this paper we study primary elements in Prüfer lattices and characterize α -lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.

Prime, weakly prime and almost prime elements in multiplication lattice modules

Emel Aslankarayigit Ugurlu, Fethi Callialp, Unsal Tekir (2016)

Open Mathematics

In this paper, we study multiplication lattice modules. We establish a new multiplication over elements of a multiplication lattice module.With this multiplication, we characterize idempotent element, prime element, weakly prime element and almost prime element in multiplication lattice modules.

Pseudo-valuation rings. II

David F. Anderson, Ayman Badawi, David E. Dobbs (2000)

Bollettino dell'Unione Matematica Italiana

Viene data una condizione sufficiente affinchè un sopra-anello di un anello di pseudo-valutazione (PVR) sia ancora un PVR. Da ciò segue che se R , M è un PVR, allora ogni sopra-anello di R è un PVR se (e soltanto se) R u è quasi-locale per ciascun elemento u di M : M . Vari risultati sono dimostrati per un ideale primo di un anello commutativo arbitrario R , avente Z R come insieme di zero-divisori. Per esempio, se P è un primo «forte» di R e contiene un elemento non-zero divisore di R , allora P : P è un sopra-anello...

Currently displaying 181 – 200 of 292