Families of almost finite character
Let be a semi-prime ideal. Then is called irredundant with respect to if . If is the intersection of all irredundant ideals with respect to , it is called a fixed-place ideal. If there are no irredundant ideals with respect to , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point is a fixed-place point if is a fixed-place ideal. In this situation...
Let and be two ring homomorphisms and let and be ideals of and , respectively, such that . In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of with along with respect to (denoted by introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.
Let be a commutative ring and a multiplicative system of ideals. We say that is -Noetherian, if for each ideal of , there exist and a finitely generated ideal such that . In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
Let and be commutative rings with unity, a ring homomorphism and an ideal of . Then the subring and of is called the amalgamation of with along with respect to . In this paper, we determine when is a (generalized) filter ring.