Displaying 41 – 60 of 110

Showing per page

Maximal non-Jaffard subrings of a field.

Mabrouk Ben Nasr, Noôman Jarboui (2000)

Publicacions Matemàtiques

A domain R is called a maximal non-Jaffard subring of a field L if R ⊂ L, R is not a Jaffard domain and each domain T such that R ⊂ T ⊆ L is Jaffard. We show that maximal non-Jaffard subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dimv R = dim R + 1. Further characterizations are given. Maximal non-universally catenarian subrings of their quotient fields are also studied. It is proved that this class of domains coincides with the previous class when R is integrally...

On Bhargava rings

Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit (2023)

Mathematica Bohemica

Let D be an integral domain with the quotient field K , X an indeterminate over K and x an element of D . The Bhargava ring over D at x is defined to be 𝔹 x ( D ) : = { f K [ X ] : for all a D , f ( x X + a ) D [ X ] } . In fact, 𝔹 x ( D ) is a subring of the ring of integer-valued polynomials over D . In this paper, we aim to investigate the behavior of 𝔹 x ( D ) under localization. In particular, we prove that 𝔹 x ( D ) behaves well under localization at prime ideals of D , when D is a locally finite intersection of localizations. We also attempt a classification of integral domains D ...

On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers

Zahra Heidarian, Hossein Zakeri (2015)

Colloquium Mathematicae

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex H o m R ̂ ( ( , R ̂ ) , M ) is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.

Currently displaying 41 – 60 of 110