Linear forms on modules of projective dimension one.
In this paper, we use a characterization of -modules such that to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting to be the local cohomology functor of with respect to the maximal ideal where is the Krull dimension of .
We study, in certain cases, the notions of finiteness and stability of the set of associated primes and vanishing of the homogeneous pieces of graded generalized local cohomology modules.
Let be a local ring and a semidualizing module of . We investigate the behavior of certain classes of generalized Cohen-Macaulay -modules under the Foxby equivalence between the Auslander and Bass classes with respect to . In particular, we show that generalized Cohen-Macaulay -modules are invariant under this equivalence and if is a finitely generated -module in the Auslander class with respect to such that is surjective Buchsbaum, then is also surjective Buchsbaum.
Let be a commutative Noetherian ring and let be a semidualizing -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every -injective module , the character module is -flat, then the class is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class is covering....