Displaying 21 – 40 of 51

Showing per page

On soluble groups of module automorphisms of finite rank

Bertram A. F. Wehrfritz (2017)

Czechoslovak Mathematical Journal

Let R be a commutative ring, M an R -module and G a group of R -automorphisms of M , usually with some sort of rank restriction on G . We study the transfer of hypotheses between M / C M ( G ) and [ M , G ] such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose [ M , G ] is R -Noetherian. If G has finite rank, then M / C M ( G ) also is R -Noetherian. Further, if [ M , G ] is R -Noetherian and if only certain abelian sections...

On strongly affine extensions of commutative rings

Nabil Zeidi (2020)

Czechoslovak Mathematical Journal

A ring extension R S is said to be strongly affine if each R -subalgebra of S is a finite-type R -algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if R is a quasi-local ring of finite dimension, then R S is integrally closed and strongly affine if and only if R S is a Prüfer extension (i.e. ( R , S ) is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let G be...

On the Cantor-Bendixson rank of metabelian groups

Yves Cornulier (2011)

Annales de l’institut Fourier

We study the Cantor-Bendixson rank of metabelian and virtually metabelian groups in the space of marked groups, and in particular, we exhibit a sequence ( G n ) of 2-generated, finitely presented, virtually metabelian groups of Cantor-Bendixson rank  ω n .

On the minimaxness and coatomicness of local cohomology modules

Marzieh Hatamkhani, Hajar Roshan-Shekalgourabi (2022)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring, I an ideal of R and M an R -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and 𝒞 -minimaxness of local cohomology modules. We show that if M is a minimax R -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if n is a nonnegative integer such that ( H I i ( M ) ) 𝔪 is a minimax R 𝔪 -module for all 𝔪 Max ( R ) and for all i < n , then the set Ass R ( H I n ( M ) ) is finite. Also, if H I i ( M ) is minimax for...

Currently displaying 21 – 40 of 51