Ideal theory in Prüfer rings with zero divisors.
It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen -system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.
We compare several different concepts of integer-valued polynomials on algebras and collect the few results and many open questions to be found in the literature.
We study the minimal number of elements of maximal order occurring in a zero-sumfree sequence over a finite Abelian p-group. For this purpose, and in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, our method implies that, if we denote by exp(G) the exponent of the finite Abelian p-group G considered, every zero-sumfree sequence S with maximal possible length over...