On A Combinatorial Problem Connected withFactorizations
Page 1 Next
Weidong Gao (1997)
Colloquium Mathematicae
Paolo Valabrega (1974)
Rendiconti del Seminario Matematico della Università di Padova
Bakkari, Chahrazade, Mahdou, Najib (2009)
Beiträge zur Algebra und Geometrie
Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit (2023)
Mathematica Bohemica
Let be an integral domain with the quotient field , an indeterminate over and an element of . The Bhargava ring over at is defined to be . In fact, is a subring of the ring of integer-valued polynomials over . In this paper, we aim to investigate the behavior of under localization. In particular, we prove that behaves well under localization at prime ideals of , when is a locally finite intersection of localizations. We also attempt a classification of integral domains ...
F. Decruyenaere, E. Jespers, P. Wauters (1991)
Semigroup forum
Štefan Porubský (1976)
Czechoslovak Mathematical Journal
Ladislav Skula (1976)
Acta Arithmetica
Nicolae Popescu, Constantin Vraciu (1985)
Rendiconti del Seminario Matematico della Università di Padova
Charkani, M.E., Lahlou, O. (2003)
International Journal of Mathematics and Mathematical Sciences
Scott T. Chapman, Felix Gotti, Roberto Pelayo (2014)
Colloquium Mathematicae
Let M be a commutative cancellative monoid. The set Δ(M), which consists of all positive integers which are distances between consecutive factorization lengths of elements in M, is a widely studied object in the theory of nonunique factorizations. If M is a Krull monoid with cyclic class group of order n ≥ 3, then it is well-known that Δ(M) ⊆ {1,..., n-2}. Moreover, equality holds for this containment when each class contains a prime divisor from M. In this note, we consider the question of determining...
Giorgio Piva (1988)
Rendiconti del Seminario Matematico della Università di Padova
Muhammad Zafrullah (1978)
Manuscripta mathematica
Adil G. Naoum, Majid M. Balboul (1985)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Moshe Jarden (1974/1975)
Manuscripta mathematica
Dobbs, David E. (1981)
International Journal of Mathematics and Mathematical Sciences
L.J. Jr. Ratliff (1972)
Journal für die reine und angewandte Mathematik
Shahabaddin Ebrahimi Atani (2004)
Czechoslovak Mathematical Journal
First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime -modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
Donald L. McQuillan (1985)
Journal für die reine und angewandte Mathematik
Joe L. Mott, M. Zafrullah (1981)
Manuscripta mathematica
A. Geroldinger, F. Halter-Koch (1996)
Monatshefte für Mathematik
Page 1 Next