Displaying 61 – 80 of 81

Showing per page

On torsion Gorenstein injective modules

Okyeon Yi (1998)

Archivum Mathematicum

In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if D is a Gorenstein integral domain and M is a left D -module, then the torsion submodule t G M of Gorenstein injective envelope G M of M is also Gorenstein injective. We can also show that if M is a torsion D -module of a Gorenstein injective integral domain D , then the Gorenstein injective envelope G M of M is torsion.

One-fibered ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal

Veronique Lierde (2011)

Open Mathematics

Let (R;m) be a 2-dimensional rational singularity with algebraically closed residue field and whose associated graded ring is an integrally closed domain. Göhner has shown that for every prime divisor v of R, there exists a unique one-fibered complete m-primary ideal A v in R with unique Rees valuation v and such that any complete m-primary ideal with unique Rees valuation v, is a power of A v. We show that for v ≠ ordR, A v is the inverse transform of a simple complete ideal in an immediate quadratic...

Currently displaying 61 – 80 of 81