The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 81

Showing per page

On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers

Zahra Heidarian, Hossein Zakeri (2015)

Colloquium Mathematicae

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex H o m R ̂ ( ( , R ̂ ) , M ) is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.

On Cohen-Macaulay rings

Edgar E. Enochs, Jenda M. G. Overtoun (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we use a characterization of R -modules N such that f d R N = p d R N to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the d t h local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R .

On commutative rings whose prime ideals are direct sums of cyclics

M. Behboodi, A. Moradzadeh-Dehkordi (2012)

Archivum Mathematicum

In this paper we study commutative rings R whose prime ideals are direct sums of cyclic modules. In the case R is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring ( R , ) , the following statements are equivalent: (1) Every prime ideal of R is a direct sum of cyclic R -modules; (2) = λ Λ R w λ where Λ is an index set and R / Ann ( w λ ) is a principal ideal ring for each λ Λ ; (3) Every prime ideal of R is a direct sum of at most...

Currently displaying 1 – 20 of 81

Page 1 Next