Chow Motif and Higher Chow Theory of G/P.
We show that the natural morphism between the fundamental group scheme of the generic fiber of a scheme over a connected Dedekind scheme and the generic fiber of the fundamental group scheme of is always faithfully flat. As an application we give a necessary and sufficient condition for a finite, dominated pointed -torsor over to be extended over . We finally provide examples where is an isomorphism.
We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...