Generalized Hodge classes on the moduli space of curves.
In questo lavoro si generalizzano alcuni risultati di [3] riguardanti la proprietà di alcune curve nodali, su superficie non-singolari in , di essere «geometricamente linearmente normali» (concetto che estende la ben nota proprietà di essere linearmente normale). Precisamente, per una data curva , irriducibile e dotata di soli punti nodali come uniche singolarità, che giace su una superfice proiettiva, non-singolare e linearmente normale, si determina un limite superiore «sharp» sul numero dei...
Here we study the deformation theory of some maps f: X → ℙr , r = 1, 2, where X is a nodal curve and f|T is not constant for every irreducible component T of X. For r = 1 we show that the “stratification by gonality” for any subset of [...] with fixed topological type behaves like the stratification by gonality of M g.
Let E be an elliptic curve over a field K of characteristic not equal to 2 and let N > 1 be an integer prime to char(K). The purpose of this paper is to construct the (two-dimensional) Hurwitz moduli space H (E/K,N,2) which classifies genus 2 covers of E of degree N and to show that it is closely related to the modular curve X(N) which parametrizes elliptic curves with level-N-structure. More precisely, we introduce the notion of a normalized genus 2 cover of E/K and show that the corresponding...
In this paper we explore several concrete problems, all more or less related to the intersection theory of the moduli space of (stable) curves, introduced by Mumford [Mu 1].
The main goal of this paper is to introduce a set of conjectures on the relations in the tautological rings. In particular, this framework gives an efficient algorithm to calculate all tautological equations using only finite-dimensional linear algebra. Other applications include the proofs of Witten’s conjecture on the relations between higher spin curves and Gelfand–Dickey hierarchy and Virasoro conjecture for target manifolds with conformal semisimple quantum cohomology, both for genus up to...
We show that the generating function for the higher Weil–Petersson volumes of the moduli spaces of stable curves with marked points can be obtained from Witten’s free energy by a change of variables given by Schur polynomials. Since this generating function has a natural extension to the moduli space of invertible Cohomological Field Theories, this suggests the existence of a “very large phase space”, correlation functions on which include Hodge integrals studied by C. Faber and R. Pandharipande....