Perturbing plane cruve singularities.
We describe the singularity of all but finitely-many germs in a pencil generated by two germs of plane curve sharing no tangent.
Page 1
Eduardo Casas-Alvero, Rosa Peraire (2003)
Revista Matemática Iberoamericana
We describe the singularity of all but finitely-many germs in a pencil generated by two germs of plane curve sharing no tangent.
Roger Wiegand (1988/1989)
Mathematische Zeitschrift
Evelia R. García Barroso, Arkadiusz Płoski (2004)
Annales Polonici Mathematici
We study pencils of plane curves , t ∈ ℂ, using the notion of polar invariant of the plane curve f = 0 with respect to a smooth curve l = 0. More precisely we compute the jacobian Newton polygon of the generic fiber , t ∈ ℂ. The main result gives the description of pencils which have an irreducible fiber. Furthermore we prove some applications of the local properties of pencils to singularities at infinity of polynomials in two complex variables.
Hisao Yoshihara (1989)
Manuscripta mathematica
Alf Bjorn Aure (1984)
Mathematica Scandinavica
Jean-François Mestre (1980)
Annales de l'institut Fourier
On démontre que les seuls points rationnels sur de la courbe sont les pointes.En conséquence, il n’existe pas de courbe elliptique définie sur possédant un sous-groupe cyclique rationnel d’ordre .
Marcel Morales (1984)
Bulletin de la Société Mathématique de France
Maciej Borodzik (2012)
Bulletin of the Polish Academy of Sciences. Mathematics
We present an effective and elementary method of determining the topological type of a cuspidal plane curve singularity with given local parametrization.
Page 1