Quelques applications de la cohomologie d'intersection
Page 1
T. A. Springer (1981/1982)
Séminaire Bourbaki
Michel Brion (1986)
Manuscripta mathematica
George Lusztig (2000)
Annales de l'institut Fourier
The cohomology of Nakajima’s varieties is known to carry a natural Weyl group action. Here this fact is established using the method of intersection cohomology, in analogy with the definition of Springer’s representations.
Abdelghani El Mazouni (1996)
Bulletin de la Société Mathématique de France
Haruhisa Nakajima (1984)
Manuscripta mathematica
Ralph J. Bremigan (1994)
Journal für die reine und angewandte Mathematik
M.M. Kapranov, B. Sturmfels (1991)
Mathematische Annalen
Joanna Święcicka (1999)
Colloquium Mathematicae
Let X be an algebraic toric variety with respect to an action of an algebraic torus S. Let Σ be the corresponding fan. The aim of this paper is to investigate open subsets of X with a good quotient by the (induced) action of a subtorus T ⊂ S. It turns out that it is enough to consider open S-invariant subsets of X with a good quotient by T. These subsets can be described by subfans of Σ. We give a description of such subfans and also a description of fans corresponding to quotient varieties. Moreover,...
Page 1