Page 1

Displaying 1 – 6 of 6

Showing per page

Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple

Michel Brion (1983)

Annales de l'institut Fourier

Soit G un groupe algébrique semi-simple complexe, U un sous-groupe unipotent maximal de G , T un tore maximal de G normalisant U . Si V est un G -module rationnel de dimension finie, alors G opère sur l’algèbre C [ V ] des fonctions polynomiales sur V ; la structure de G -module de C [ V ] est décrite par la T -algèbre C [ V ] U des U -invariants de C [ V ] . Cette algèbre est de type fini et multigraduée (par le degré de C [ V ] et le poids par rapport à T ). On donne une formule intégrale pour la série de Poincaré de cette algèbre graduée....

Invariants of four subspaces

Gerry W. Schwarz, David L. Wehlau (1998)

Annales de l'institut Fourier

We consider problems in invariant theory related to the classification of four vector subspaces of an n -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.

Currently displaying 1 – 6 of 6

Page 1