On the structure of certain normal ideals
The structure of 3-folds in P6 which are generally linked via a complete intersection (f1,f2,f3) to 3-folds in P6 of degree d ≤ 5 is determined. We also give three new examples of smooth 3-folds in P6 of degree 11 and genus 9. These examples are obtained via liaison. The first two are 3-folds linked via a complete intersection (2,3,3) to 3-folds in P6 of degree 7: (i) the hyperquadric fibration over P1 and (ii) the scroll over P2. The third example is Pfaffian linked to a 3-dimensional quadric in...
We construct certain normal toric varieties (associated to finite distributive lattices) which are degenerations of the Grassmannians. We also determine the singular loci for certain normal toric varieties, namely the ones which are certain ladder determinantal varieties. As a consequence, we prove a refined version of the conjecture of Laksmibai & Sandhya [Criterion for smoothness of Schubert varieties in , Proc. Ind. Acad. Sci., 100 (1990), 45-52] on the components of the singular locus,...
Gorenstein liaison seems to be the natural notion to generalize to higher codimension the well-known results about liaison of varieties of codimension 2 in projective space. In this paper we study points in P3 and curves in P4 in an attempt to see how far typical codimension 2 results will extend. While the results are satisfactory for small degree, we find in each case examples where we cannot decide the outcome. This examples are candidates for counterexamples to the hoped-for extensions of codimension...
Dans cet article, nous étudions le schéma de Hilbert des courbes gauches (de pure dimension 1 et sans points immergés) de degré et genre , qui est le plus grand genre pour lequel l’étude de est non triviale. Nous commençons par donner, pour chaque valeur de , tous les modules de Rao des courbes de et ses sous-schémas à cohomologie constante, et nous décrivons la courbe générique de chacun de ces sous-schémas. Nous déduisons ensuite les composantes irréductibles et la dimension de . Enfin,...
The homogeneous ideals of curves in a double plane have been studied by Chiarli, Greco, Nagel. Completing this work we describe the equations of any curve that is contained in some quadric. As a consequence, we classify the Hartshorne-Rao modules of such curves.
We consider the Hilbert scheme of space curves with homogeneous ideal and Rao module . By taking suitable generizations (deformations to a more general curve) of , we simplify the minimal free resolution of by e.g making consecutive free summands (ghost-terms) disappear in a free resolution of . Using this for Buchsbaum curves of diameter one ( for only one ), we establish a one-to-one correspondence between the set of irreducible components of that contain and a set of minimal...