Remarks on the Cayley-van der Waerden-Chow form.
Achilles, Rüdiger, Stückrad, Jürgen (2007)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Silvio Greco (1989)
Mathematische Annalen
Marc Coppens, Gerriet Martens (1991)
Compositio Mathematica
Yoshiaki Fukuma (2009)
Rendiconti del Seminario Matematico della Università di Padova
Maria Virginia Catalisano, Anthony V. Geramita, Alessandro Gimigliano (2007)
Collectanea Mathematica
In this paper we compute the dimension of all the sth higher secant varieties of the Segre-Veronese embeddings Yd of the product P1 × P1 × P1 in the projective space PN via divisors of multidegree d = (a,b,c) (N = (a+1)(b+1)(c+1) - 1). We find that Yd has no deficient higher secant varieties, unless d = (2,2,2) and s = 7, or d = (2h,1,1) and s = 2h + 1, with defect 1 in both cases.
Bjorn Poonen (2007)
Journal de Théorie des Nombres de Bordeaux
Classical sieve methods of analytic number theory have recently been adapted to a geometric setting. In the new setting, the primes are replaced by the closed points of a variety over a finite field or more generally of a scheme of finite type over . We will present the method and some of the surprising results that have been proved using it. For instance, the probability that a plane curve over is smooth is asymptotically as its degree tends to infinity. Much of this paper is an exposition...
J. Alexander (1988)
Compositio Mathematica
Fedor Bogomolov, Paolo Cascini, Bruno Oliveira (2006)
Open Mathematics
We prove that any finite set of n-dimensional isolated algebraic singularities can be afforded on a simply connected projective variety.
David B. Jaffe (1991)
Manuscripta mathematica
Sonia Brivio (1993)
Mathematische Zeitschrift
Monica Idà, Emilia Mezzetti (1990)
Manuscripta mathematica
Alessandra Bernardi, Maria Virginia Catalisano (2006)
Collectanea Mathematica
We consider the k-osculating varietiesOk,d to the Veronese d?uple embeddings of P2. By studying the Hilbert function of certain zero-dimensional schemes Y ⊂ P2, we find the dimension of Osk,d, the (s?1)th secant varieties of Ok,d, for 3 ≤ s ≤ 6 and s = 9, and we determine whether those secant varieties are defective or not.
W. Fulton, S. Kleiman, R. Piene, H. Tai (1985)
Bulletin de la Société Mathématique de France
Paul Cherenack (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Antonio Lanteri, Daniele Struppa (1984)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Si illustrano alcune relazioni tra le varietà proiettive complesse con duale degenere, le varietà la cui topologia si riflette in quella della sezione iperpiana in misura maggiore dell'ordinario e le varietà fibrate in spazi lineari su di una curva.
Cristiano Bocci (2005)
Collectanea Mathematica
Here we introduce the concept of special effect varieties in higher dimension and we generalize to Pn, n ≥ 3, the two conjectures given in [2] for the planar case. Finally, we propose some examples on the product of projective spaces and we show how these results fit with the ones of Catalisano, Geramita and Gimigliano.
Edoardo Ballico, Paolo Oliverio (1983)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
In questa nota si danno dei criteri per la stabilità di fasci di quartiche piane.
Imrich Komara (1973)
Matematický časopis
Ballico, E., Cossidente, A. (1997)
Mathematica Pannonica
Lando Degoli (1984)
Collectanea Mathematica