Loading [MathJax]/extensions/MathZoom.js
Let f:ℝ² → ℝ be a polynomial mapping with a finite number of critical points. We express the degree at infinity of the gradient ∇f in terms of the real branches at infinity of the level curves {f(x,y) = λ} for some λ ∈ ℝ. The formula obtained is a counterpart at infinity of the local formula due to Arnold.
Let be a set-germ at such that . We say that is a direction of at if there is a sequence of points tending to such that as . Let denote the set of all directions of at .Let be subanalytic set-germs at such that . We study the problem of whether the dimension of the common direction set, is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of and are also subanalytic. In particular if two subanalytic...
Let X ⊂ (ℝⁿ,0) be a germ of a set at the origin. We suppose X is described by a subalgebra, Cₙ(M), of the algebra of germs of functions at the origin (see 2.1). This algebra is quasianalytic. We show that the germ X has almost all the properties of germs of semianalytic sets. Moreover, we study the projections of such germs and prove a version of Gabrielov’s theorem.
Nous donnons une preuve géométrique du théorème d’élimination des quantificateurs pour les fonctions logarithmico-exponentielles prouvé initialement par van den Dries, Macintyre et Marker. Notre démonstration n’utilise pas de Théorie des Modèles. Elle repose sur un théorème de préparation pour les fonctions sous-analytiques.
Let be a compact semianalytic set and let be a
collection of real analytic functions defined in some neighbourhood of . Let
be the germ at of the set . Then
there exist analytic functions defined in a neighbourhood of
such that , for all .
The aim of this paper is to prove that every subset of definable from addition, multiplication and exponentiation admits a stratification satisfying Whitney’s conditions a) and b).
Currently displaying 61 –
69 of
69