Displaying 21 – 40 of 471

Showing per page

Algebraic approximation of analytic sets definable in an o-minimal structure

Marcin Bilski, Kamil Rusek (2010)

Annales Polonici Mathematici

Let K,R be an algebraically closed field (of characteristic zero) and a real closed field respectively with K=R(√(-1)). We show that every K-analytic set definable in an o-minimal expansion of R can be locally approximated by a sequence of K-Nash sets.

Algebraic equivalence of real algebraic cycles

Miguel Abánades, Wojciech Kucharz (1999)

Annales de l'institut Fourier

Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.

Algebraically constructible chains

Hélène Pennaneac'h (2001)

Annales de l’institut Fourier

We construct for a real algebraic variety (or more generally for a scheme essentially of finite type over a field of characteristic 0 ) complexes of algebraically and k - algebraically constructible chains. We study their functoriality and compute their homologies for affine and projective spaces. Then we show that the lagrangian algebraically constructible cycles of the cotangent bundle are exactly the characteristic cycles of the algebraically constructible functions.

Amibes de variétés algébriques et dénombrement de courbes

Ilia Itenberg (2002/2003)

Séminaire Bourbaki

Les amibesdes variétés algébriques dans ( * ) n sont les images de ces variétés par l’application des moments Log : ( * ) n n , Log : ( z 1 , ... , z n ) ( log | z 1 | , ... , log | z n | ) . Des résultats obtenus par G. Mikhalkin montrent l’utilité des amibes pour l’étude des variétés algébriques réelles et complexes. Les amibes peuvent être déformées en des complexes polyédraux appelésvariétés algébriques tropicales. Cette déformation permet, en particulier, de calculer les invariants de Gromov-Witten du plan projectif et d’autres surfaces toriques en dénombrant des courbes...

Currently displaying 21 – 40 of 471