The search session has expired. Please query the service again.
Let K be a subfield of the real field, D ⊆ K be a discrete set and f: Dⁿ → K be such that f(Dⁿ) is somewhere dense. Then (K,f) defines ℤ. We present several applications of this result. We show that K expanded by predicates for different cyclic multiplicative subgroups defines ℤ. Moreover, we prove that every definably complete expansion of a subfield of the real field satisfies an analogue of the Baire category theorem.
Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than with .
We prove the rationality of the Łojasiewicz exponent for p-adic semi-algebraic functions without compactness hypothesis. In the parametric case, we show that the parameter space can be divided into a finite number of semi-algebraic sets on each of which the Łojasiewicz exponent is constant.
We prove the rationality of the Łojasiewicz exponent for semialgebraic functions without compactness hypothesis. In the parametric situation, we show that the parameter space can be divided into a finite number of semialgebraic sets on each of which the Łojasiewicz exponent is constant.
There is a well-known procedure -induction- for extending an action of a subgroup H of a Lie group G on a topological space X to an action of G on an associated space. Induction can also extend a smooth action of a subgroup H of a Lie group G on a manifold M to a smooth action of G on an associated manifold. In this paper elementary methods are used to show that induction also works in the category of (nonsingular) real algebraic varieties and regular or entire maps if G is a compact abelian Lie...
Letg:U→ℝ (U open in ℝn) be an analytic and K-subanalytic (i. e. definable in ℝanK, whereK, the field of exponents, is any subfield ofℝ) function. Then the set of points, denoted Σ, whereg does not admit an analytic extension is K-subanalytic andg can be extended analytically to a neighbourhood of Ū.
We investigate several extension properties of Fréchet differentiable functions defined on closed sets for o-minimal expansions of real closed fields.
We study the extensibility of piecewise polynomial functions defined on closed subsets of to all of . The compact subsets of on which every piecewise polynomial function is extensible to can be characterized in terms of local quasi-convexity if they are definable in an o-minimal expansion of . Even the noncompact closed definable subsets can be characterized if semialgebraic function germs at infinity are dense in the Hardy field of definable germs. We also present a piecewise polynomial...
We extend a result of M. Tamm as follows:Let , be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions . Then there exists such that for all , if is in a neighborhood of , then is real analytic in a neighborhood of .
Let be a continuous, piecewise-polynomial function. The Pierce-Birkhoff conjecture (1956) is that any such is representable in the form , for some finite collection of polynomials . (A simple example is .) In 1984, L. Mahé and, independently, G. Efroymson, proved this for ; it remains open for . In this paper we prove an analogous result for “generalized polynomials” (also known as signomials), i.e., where the exponents are allowed to be arbitrary real numbers, and not just natural numbers;...
Currently displaying 21 –
31 of
31