Displaying 41 – 60 of 471

Showing per page

Analytical representation of ellipses in the Aitchison geometry and its application

Karel Hron (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Compositional data, multivariate observations that hold only relative information, need a special treatment while performing statistical analysis, with respect to the simplex as their sample space ([Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986.], [Aitchison, J., Greenacre, M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392.], [Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds): Compositional data analysis in the geosciences:...

Approximation by continuous rational maps into spheres

Wojciech Kucharz (2014)

Journal of the European Mathematical Society

Investigated are continuous rational maps of nonsingular real algebraic varieties into spheres. In some cases, necessary and sufficient conditions are given for a continuous map to be approximable by continuous rational maps. In particular, each continuous map between unit spheres can be approximated by continuous rational maps.

Approximation of C -functions without changing their zero-set

F. Broglia, A. Tognoli (1989)

Annales de l'institut Fourier

For a C function ϕ : M (where M is a real algebraic manifold) the following problem is studied. If ϕ - 1 ( 0 ) is an algebraic subvariety of M , can ϕ be approximated by rational regular functions f such that f - 1 ( 0 ) = ϕ - 1 ( 0 ) ? We find that this is possible if and only if there exists a rational regular function g : M such that g - 1 ( 0 ) = ϕ - 1 ( 0 ) and g(x) · ϕ ( x ) 0 for any x in n . Similar results are obtained also in the analytic and in the Nash cases.For non approximable functions the minimal flatness locus is also studied.

Arc-analyticity and polynomial arcs

Rémi Soufflet (2004)

Annales Polonici Mathematici

We relate the notion of arc-analyticity and the one of analyticity on restriction to polynomial arcs and we prove that in the subanalytic setting, these two notions coincide.

Around real Enriques surfaces.

Alexander Degtyarev, Vlatcheslav Kharlamov (1997)

Revista Matemática de la Universidad Complutense de Madrid

We present a brief overview of the classification of real Enriques surfaces completed recently and make an attempt to systemize the known classification results for other special types of surfaces. Emphasis is also given to the particular tools used and to the general phenomena discovered; in particular, we prove two new congruence type prohibitions on the Euler characteristic of the real part of a real algebraic surface.

Betti numbers of random real hypersurfaces and determinants of random symmetric matrices

Damien Gayet, Jean-Yves Welschinger (2016)

Journal of the European Mathematical Society

We asymptotically estimate from above the expected Betti numbers of random real hypersurfaces in smooth real projective manifolds. Our upper bounds grow as the square root of the degree of the hypersurfaces as the latter grows to infinity, with a coefficient involving the Kählerian volume of the real locus of the manifold as well as the expected determinant of random real symmetric matrices of given index. In particular, for large dimensions, these coefficients get exponentially small away from...

Calculation of industrial robot trajectory in frame composite production

Mlýnek, Jaroslav, Martinec, Tomáš, Petrů, Michal (2017)

Programs and Algorithms of Numerical Mathematics

This article is focused on calculating the trajectory of an industrial robot in the production of composites for the automotive industry. The production technology is based on the winding of carbon fibres on a polyurethane frame. The frame is fastened to the end-effector of the robot arm (i.e. robot-end-effector, REE). The passage of the frame through the fibre processing head is determined by the REE trajectory. The position of the fibre processing head is fixed and is composed of three fibre guide...

Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains

Xiaojun Huang, Shanyu Ji (2002)

Annales de l’institut Fourier

For a strongly pseudoconvex domain D n + 1 defined by a real polynomial of degree k 0 , we prove that the Lie group Aut ( D ) can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle Y of D , and that the sum of its Betti numbers is bounded by a certain constant C n , k 0 depending only on n and k 0 . In case D is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser...

Currently displaying 41 – 60 of 471