Pencils of irreducible rational curves and plane Jacobian conjecture
In certain cases the invertibility of a polynomial map F = (P,Q): ℂ²→ ℂ² can be characterized by the irreducibility and the rationality of the curves aP+bQ = 0, (a:b) ∈ ℙ¹.
In certain cases the invertibility of a polynomial map F = (P,Q): ℂ²→ ℂ² can be characterized by the irreducibility and the rationality of the curves aP+bQ = 0, (a:b) ∈ ℙ¹.
A non-zero constant Jacobian polynomial map F=(P,Q):ℂ² → ℂ² has a polynomial inverse if the component P is a simple polynomial, i.e. its regular extension to a morphism p:X → ℙ¹ in a compactification X of ℂ² has the following property: the restriction of p to each irreducible component C of the compactification divisor D = X-ℂ² is of degree 0 or 1.
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).